Some Ostrowski Type Integral Inequalities using Hypergeometric Functions

نویسندگان

چکیده

The main objective of this paper is basically to acquire some new extensions Ostrowski type inequalities for the function whose first derivatives' absolute value are $s$--type $p$--convex. We initially presented a auxiliary definition namely $p$--convex function. Some beautiful algebraic properties and examples related newly introduced discussed. additionally investigated cases that can be derived from novel refinements paper. These results yield us generalizations prior results. trust techniques in will further motivate intrigued researchers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some General Ostrowski Type Inequalities

A new general Ostrowski type inequality for functions whose (n − 1)th derivatives are continuous functions of bounded variation is established. Some special cases are discussed.

متن کامل

On some Ostrowski type inequalities

In this paper we study Ostrowski type inequalities. We generalize some of the results presented in [1]. 2000 Mathematical Subject Classification: 26D15

متن کامل

Integral Inequalities of the Ostrowski Type

Integral inequalities of Ostrowski type are developed for n−times differentiable mappings, with multiple branches, on the L∞ norm. Some particular inequalities are also investigated, which include explicit bounds for perturbed trapezoid, midpoint, Simpson’s, NewtonCotes and left and right rectangle rules. The results obtained provide sharper bounds than those obtained by Dragomir [5] and Cerone...

متن کامل

Ostrowski type inequalities for functions whose derivatives are preinvex

In this paper‎, ‎making use of a new identity‎, ‎we establish new‎ ‎inequalities of Ostrowski type for the class of preinvex functions and‎ ‎gave some midpoint type inequalities‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of fractional calculus and nonlinear systems

سال: 2021

ISSN: ['2709-9547']

DOI: https://doi.org/10.48185/jfcns.v2i1.240